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The origin of meandering and braiding of alluvial rivers is re-analysed in terms of 
stability theory. The flow is described by a two-dimensional model, and the trans- 
portation of sediment is separated into bed-load transport and transport of suspended 
sediment, by use of the improved knowledge of sediment transport mechanisms 
achieved in rec,ent. years. The paper explains why it is important to distinguish 
between the sediment transported as bed load and that in suspension. 

The analysis is able to predict whether a river remains stable or tends to meander 
or braid. 

The results of the stability analysis are compared with laboratory experiments and 
dat,a from natural rivers, and the agreement is satisfactory. 

1. Introduction 
The instability of rivers has been investigated theoretically by several authors 

during the last decade. Of the great number of publications, the contributions by 
Hansen (1 967), Callander (1969) and Engelund & Skovgaard (1 973) should be men- 
tioned because of their relevance t'o the present paper. 

Hansen and Callander both applied a two-dimensional flow model, assuming that 
the direction of the local sediment transport is parallel to the local velocity vector 
and that the sediment transport rate is uniquely related to the bed shear stress. 

Engelund & Skovgaard extended the analysis by introducing a three-dimensional 
flow model which takes account of the helical motion induced because of the non- 
uniform vertical velocity distribution in the basic flow, an effect neglected in the 
previous approaches. Further, they introduced the effect of a transverse bed slope on 
the transportation of the sediment and found that this effect is of great significance, 
because the theory predicts that the river will braid into an infinite number of 
branches if it is not included. This suggests that an accurate knowledge of the inter- 
action of fluid flow and sediment motion is necessary in order to develop an adequate 
description of the river instability. 

In  the present paper the flow is described by essentially the same two-dimensional, 
linearized flow model as was adopted by Hansen, Callander and recently by Parker 
(1976). The theory differs from the previous one in the following respects: 

(i) The linearized equations are solved numerically without introducing further 
approximations, such as the perturbation methods applied by Parker and to some 
extent by Callander. This point seems to be more important than has been realized 
previously. 
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(ii) The effect of a transverse slope of the bed is accounted for. During t,he last few 
years this problem has been investigated in a number of publications and a pre- 
liminary solution has obtained a considerable amount of t'heoretical and experimental 
support. As mentioned above, this particular effect is very important in the analysis. 

(iii) The total amount of sediment is transported partly as bed load and partly in 
suspension. The fact that at  large flow rates a greater part of the sediment load will 
be carried in suspension implies that there can be no unique relationship between the 
transport rate and the bed shear stress. To account for this it is necessary to introduce 
a supplementary equation of continuity for the suspended sediment, and to be able 
to estimate the transport rates of the bed load and the suspension separately. 

2. Derivation of the linearized flow equations 
As in many previous investigations, the formation of meanders is related to the 

instability of an alluvial channel with fixed and impermeable side walls. As the migra- 
tion velocity of the deGeloping alternate bars is very small the flow is assumed to be 
quasi -steady. 

The bed is assumed to be deformed by a doubly periodic perturbation h of the form 

h = h, cos (k ,  x,) exp ( ik ,  xl) = h, E .  ( 1 )  
Here x1 is the co-ordinate in the flow direction, x, the transverse co-ordinate and k, 
and k, are the wavenumbers in these two directions. h, is the amplitude of the per- 
turbation. The flow over this doubly periodic bed is described by the following two 
equations of motion: 

where U, and U, are the velocity components in the x1 and x, directions, y is the local 
water depth, g the acceleration due to gravity, p the density of water, I, the undisturbed 
slope of the channel and 7 the local bed shear stress in the x1 direction. Equations ( 2 )  
and (3) are valid if the vertical accelerations of the fluid are neglected (hydrostatic 
pressure), if vertical variations of the velocity are neglected and if the tractive force 
on the bed has the direction of the velocity vector. 

The equation of continuity for the water is 

If we assume that the amplitude of the bed perturbation h, is small, it is possible 
to linearize (2)-(4) by introducing 

U, = U + U , ,  U, = u,, = D+7, 7 = T ~ + ? ,  ( 5 )  

where U is the flow velocity, D the depth and 7b the bed shear stress in the unperturbed 
flow, while ul, u3, 7 and ? are small quantities. 

Assuming that the perturbations are doubly periodic like the bed elevation, we may 
write 

u1 = ul0 E ,  7 = 7, E ,  7 = 7, E ,  u3 = u , ~  tan (k3 z,) E ,  (6) 
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where E has been introduced in (1) .  Inserting (5) and (6) into (2)-(4) gives 

Uik1 T O  + Diki u ~ O  + Du30 k3 = 0. ( 9 )  

In  order to solve these three equations, a relation between the shear stress and other 
hydraulic parameters is needed. Such a relation is usually given in the form 

as demonstrated in the next section, and by use of this relation, (7)-(9) can be trans- 
formed into the following dimensionless equations: 

(11) 5 (Fzik, D +aIo) +% (ik,  D + I , ( p -  1)) +- h0 ik, D = 0,  
U D 

(13) 
U %ik,D+% 30 k3D + g ik, D = 0, U 

in which 9 = U/(gD)* is the Froude number. From (11)-(13) the flow field can be 
calculated for given hydraulic parameters. 

3. Hydraulic resistance of alluvial channels 
The variation of the friction factor with flow velocity is rather complicated because 

different bed forms (ripples, dunes, plane bed, standing waves or antidunes) exist for 
different flow conditions, so that the geometry of the bed changes with flow velocity. 

(i) In case of a dune-covered bed, the resistance can be determined from the relation 
(Engelund & Hansen 1972) 

where 6 is the Shields parameter and 6’ the effective Shields parameter, i.e. 

el = 0.06 + 0.482, (14) 

e = ./(s - 1 )  ga, 6‘ = ey’/y, (15) 

in which s is the relative density and d the diameter of the grains. y’ can be calculated 
from the following equation, suggested by Einstein (1950): 

U/(gy’I)* = 6 + 2.51n ( y ’ l k ) ,  (16) 

where k is the sand roughness, which Engelund & Hansen put equal to 2.5d. From 
(14)-( 16) a relationship of the form given by (10) is obtained, with coefficients 

OI = (0-4e2/6’ + (1  - O-S62/6‘) K)-’, p = KOI, (17) 

in which K is given by 
K = - 2.5[6 + 2.5 111 (D’/2*5a)]-’. 

21-2 
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(ii) If the unperturbed bed is plane, the resistance can be calculated from (16) with 
y' = y (no form drag). Now the constants in (10) are given by 

a = 2, /3 = - 5/[6 + 261n (D/2*5a)]-? (18) 

As ripples can be considered as roughness elements which do not change their 
geometry with the flow (see for instance Yalin (1972, p. 227), who states that the 
ripple length is equal to 1000d), the constants in (10) will be determined by (18) in 
this case also. 

4. Transportation of sediment as bed load and in suspension 
As far as the formation of dunes and antidunes is concerned, it has been pointed 

out (Engelund 1971; Engelund & Fredsere 1974) that it is necessary to distinguish 
between the sediment transported as bed load and sediment transported in suspension. 
In the above-mentioned papers the bed load is defined as that part of the total load 
which adapts to spatial changes in the tractive stress so that spatial lag may be 
neglected. It is important to distinguish between bed load and suspended load, because 
the suspended load responds with a certain lag caused by the fact that the particles 
have to settle a certain distance before they become deposited. This lag is able to 
explain the formation of antidunes, while the lag originating from the fluid friction, 
combined with sediment transported as bed load, can explain the formation of dunes. 
As the two above-mentioned lags in some sense counteract each other, the transition 
from dunes to a plane bed can be explained as depending on the ratio between the 
mean rate qs of suspended load and the mean rate q,, of bed load (Engelund & Fredspre 
1974). 

In  the present analysis, a distinction between the bed load and the suspended load 
has been made for the following reasons. As far as the meander stability is concerned, 
the lag between bed and tractive stress caused by the fluid friction is rather small 
because of the large wavelengths. This may not generally be the case for the phase 
between the local tractive stress and the local transport of suspended sediment as 
this phase strongly depends on the value of the fall velocity of the suspended particles. 
This phase has been included in the present model by introducing the equation of 
continuity in three dimensions for the suspended sediment. 

In  addition, the discrimination between bed load and suspended load is important 
for reasons explained below. 

In  the simple model developed by Hansen, it was assumed that the sediment is 
transported in the direction of the local bed shear vector. However, this simple model 
leads to the conclusion that the river will tend to braid in an infinite number of 
branches. The same result was obtained in the more complete three-dimensional 
model by Engelund & Skovgaard. In  order to explain this paradox, Engelund & 
Skovgaard introduced a correction term which took into account the effect of the 
transverse slope on the lateral sediment transport rate. Since their paper appeared, 
the information on this effect has been increased considerably. 

The motion of a bed particle in a flow where the bed is sloping weakly in the trans- 
verse direction was treated theoretically by Engelund (1974), who found that 

- 1  ah 
t'an Q, ax, tan(@-&) -1 --- tan 6, 
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where Sis the deviation of the bed shear direction from the x1 direction and 9 the angle 
between the particle path and the bed shear stress. 

Equation ( 1  9) was used by Engelund to calculate the bed topography in a meander- 
ing channel. The good agreement between theory and experiments supports the 
validity of (19). In  a later theory concerning the instability of flow in an annular 
channel, Engelund (1975) again obtained experimental evidence in favour of this 
theory. 

Further, Gottlieb (1976) and Fredsrae (1976) have tested the validity of (19). 
Gottlieb calculated the flow in a weakly meandering channel with fixed side walls and 
was able to calculate from (19) a form of the bed in good agreement with his experi- 
mental findings. Fredscae calculated the sedimentation of river navigation channels, 
where the flow is parallel to  the direction of the navigation channel, so that in this case 
the theory becomes particularly simple. Here the agreement between theory and 
experiment was very satisfactory. 

In most of the above-mentioned experiments, the bed was covered either with 
ripples or with dunes, which does not seem to affect the validity of ( 1  9). 

The main reason why it is necessary to distinguish between bed and suspended load 
is that the effect of the transverse slope acts on only the bed load, as the action of 
gravity on suspended particles has no transverse component. Because the effect of a, 
transverse slope is rather significant, it is of importance to know the ratio as 
accurately as possible. Much research has been done in order to solve this problem in 
connexion with sand-bed instability (Engelund & Fredsrae 1974; Fredscae & Engelund 
1975). In  a recent paper Engelund & Fredsrae (1  976) presented a new mathematical 
model of sediment transport in straight alluvial channels. This model is baaed on 
physical ideas related to those introduced by Bagnold ( 1954) and to experiments by 
Fernand& Luque (1974). The paper predicts the bed load qb to be given by 

is the dynamic friction angle. 

@* = qb/[(s-l)gdS]’ = 5~(0”-0*78!), (20) 

where 8, is the critical Shields parameter and p is that fraction ( =probability) of the 
particles in a, single layer which is transported just above the immobile bed. For p 
the following expression was suggested: 

Further, the model is able to predict the bed concentration c, of the suspended 

(22) 
material. This is given by 

C, = 0-65/( 1 + 
where A, is the linear concentration at the bed level, given by 

8’ - 0,- #n tan ( @ ) p  

The relation between c, and 8’ is sketched in figure 1 for given values of 8 and @. For 
large values of B’, c, becomes constant and equal to 0.32, which seems to be a reasonable 
maximum value for suspended sediment in motion. 
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FIGURE 1. Variation in the bed concentration c, of suspended sediment with 8’. 

Assuming a parabolic distribution of the eddy viscosity, Rouse (1937) derived the 
following vertical distribution of the concentration of suspended material : 

where c, is the concentration at  xg = a and w the fall velocity of sediment. The effective 
value of w is determined in the same way as in earlier investigations concerning dune 
instability (Engelund & Fredsse 1974), by requiring that a particle goes into suspension 
if w < 0.8 U;. The transport rate q, can be found from 

J a  

V being the mean flow velocity at a distance x2 from the bed. a is normally taken as 2d. 
By substituting (24) into (25), Einstein (1  950) derived the following expression for 

the suspended load: 

where the constants Il and I ,  may be taken from the work charts published by Einstein. 
The distribution of the suspended load in the non-uniform flow is expressed mathe- 

matically as an equilibrium between settling, diffusion and convection. In  the present 
analysis, the calculations are simplified by neglecting vertical variations in the eddy 
viscosity. This leads to the so-called ‘slip-velocity ’ model introduced by Engelund 
(1971). The equation of continuity for a unit volume of water-sediment mixture 
becomes 

q, = 11-6c,aU~[I,ln (30y /k)+12] ,  (26) 

dcldt = U‘ aclax, + €Q2c, (27) 

where e is the eddy-viscosity coefficient, given by e = 0-077 V,  y. 



In  the case of steady 
equation with solution 

where x9 is the vertical 

Meandering and braiding of rivers 615 

uniform flow, (27) reduces to a single ordinary differential 

c, = c,exp ( - W X ~ / E ) ,  (28) 

co-ordinate and cbo is a nominal concentration at  the bed, 
which differs from that calculated from (22) and (23). The nominal bed concentration 
cm is determined by calculating the total suspended transport by the slip-velocity 
method and putting this result equal to the q, obtained from (26). 

In the perturbed flow we write the concentration as 

c = co+e, (29) 
where E is a small quantity. On substituting (29) into (27) and linearizing, we obtain 

ae ac ae (ate a2e a2e) U - + u u , A  = w - + €  -+-+- ax, ax2 ax, ax; ax; ax; 
in which the vertical flow velocity has been neglected to be consistent with the applica- 
tion of a two-dimensional flow model. 

If we write the perturbation of the concentration profile as 

(32) 
wD Uk, D2 UDwDirE, co h, 

€ € 2  

This is an ordinary second-order differential equation with constant coefficients and 
its solution contains two unknown constants, which are determined by two boundary 
conditions: 

(i) The vertical sediment flux must vanish at the surface, which yields 

or 
s a E / a ~ , + ~ e  = o at x2 = y, 

$ I (  1 )  + ( w D / E )  $( 1 )  = 0. (33) 

(ii) The variation in the correct value c, of the bed concentration with the local flow 
conditions can be calculated from (22) and (23) to be given by 

dc,/de = f (0‘) c, de1/di9, 
where 

(34) 

(35) 

To obtain the variation in the nominal bed concentration cbo we now use the 
definition of cbo,  which is 

where qs is given by (26). This yields a relation between cbo and c,  of the form 

C, IT; = KcbO U ,  
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where K is a constant. By differentiating this expression with respect to 8, we obtain 

From (16) it is easily shown that the first term on the right-hand side is always 
negligible. Hence (37) leads to the following boundary condition a t  the bed: 

which yields 

From the two boundary conditions (35) and (38), the function # is easily calculated 
from (32). 

5. The stability analysis 
Having obtained the distribution of suspended load in the non-uniform flow, it is 

easy to carry out the stability analysis. To this end we consider the equation of 
continuity for the sediment 

a91 a93 ah 
- + - = - ( l - n ) p  ax1 ax3 (39) 

where q, and q3 are the total volumetric sediment transport rates per unit width in the 
x1 and x3 directions, respectively, and n is the porosity of the sand. Until now, the 
flow over a stationary bed has been considered. This description is allowed because 
the perturbation to the bed migrates very slowly, but, in fact, the perturbation to 
the bed given by (1)  should be changed by writing the factor E as 

E = cos ( k3 x3) exp [ ik, ( x,  - at)], (40) 

where a = a, + ia, is the complex migration velocity of the bed perturbation, which 
can be found from (39). The total transport q is the sum of the bed load and the 
suspended load. From (20) we find 

in which 

The local direction of bed-load transport deviates from the local direction of the bed 
shear stress according to (19), from which we obtain 

Hence 
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FIQURE 2. Variation in the amplification factor A with 
k,  D and li, D. 0 = 0.2, s = 2-85 and CD = 7 .  

The l~ngit~udinal transport of suspended sediment is found from the expression 

where 
wDx2 G = so1 [ 9 + 2 cbo exp ( - 7 z)] d @) 

is easily obt,ained. The longitudinal variation in qRl can now be calculated from (46). 
The transverse rate of transport of suspended sediment is given by 

qs3 = shDu3(c,, + c") dx2 = qso $? E.  

By inserting (41)' (44), (45) and (48 )  into (39), the complex migration velocity a can 
be calculated. 

(48) 
U 

By use of bhe relations 
I = ( V , / U ) 2 P  

and 
WD 4 ( ~ - l ) g d  4 4  

6 3cD u; 38CD ' 
-- = 1 3 (  ) = 13(-) 

whsre cD is the drag coefficient of the grains, it is possible to determine the migration 
velocity a as a function of a number of non-dimensional quantities : 

a = a(0,  cD,  s, D ld ,  k, D,  k, D).  (49) 
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FIGURE 3. Variation in the maximum amplification factor 
with k, D. Parameter values as in figure 2. 

6. Theoretical results 
Having obtained the complex migration velocity a, it is now possible to work out 

stability diagrams: if ai > 0 the flow is unstable, as the perturbation grows exponentially 
with amplification factor k, Dui [cf. (40)]. For given values of s, D/d and 8 representa- 
tive examples of the variation in the amplification factor with the parameters k, D, 
k, D and 8 are shown in figure 2. In  this figure the amplification factor is normalized 
by the factor (1  - n)/CD>,, where CD, is the total dimensionless rate of sediment trans- 
port. The figure shows that, for a given value of k3 D, the amplification factor has a 
maximum value for a given k, D.  This maximum determines the wavelength of the 
developing meander (Callander 1969; Hansen 1967). Further, if we plot this maximum 
value for different values of k, D, we obtain the characteristic variation in max A 
sketched in figure 3. From this it is seen that, if k, D exceeds a critical value, max A 
becomes negative, and the river is stable (i.e. will remain straight). Further, if k, D 
is smaller than that critical value, three-dimensional bars will be formed at  the bed. 
If k, D is smaller than a certain value k, D, the amplification factor is greater at  
(k,D)* = 2k3D, and the river will braid (Engelund & Skovgaard 1973). In  this way 
it is possible to construct a stability diagram such as that sketched in figure 4, assuming 
that the bed is dune-covered. The figure shows at  which values of k, D = nD/B the 
river will remain straight, meander or braid as a function of 8. Here B is the width of 
the river. The lower dotted line in the figure indicates the transition from one to two 
braids. It must be mentioned that this stability diagram is very insensitive to changes 
in D/d ,  s and C,. The influence of the sediment in suspension is seen by comparing 
figure 4 with figure 5,  which shows the results of the stability theory incorporating 
bed load alone. It is seen that the stability Iimits have changed significantly: if the 
suspension is neglected, the bed will remain stable if 0 is greater than about one. 

The effect of the dunes on the river bed can be seen from figure 6, where a stability 
diagram has been constructed under the assumption t,hat t'he unperturbed bed is plane. 
This yields stability limits which differ significantly from those presented in figure 4. 
A t  high values of 8 it could be expected that the theory would predict a greater 
tendency towards braiding as it is the effect of the transverse slope on the bed load 
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FIGURE 4. Stability diagram for a dune-covered river. s = 2.65, D/d = 1000 and CD = 7. The 
rectangles indicate straight data, the circles meandering and the triangles braiding. 0, Ackers 
& Charlton (1970); 0, Shen & Komura (1968); 0, 0, Schumm & Khan (1972); @, Ashnida & 
Narai (1969); 0 ,  Callander (1969); 0, Friedkin (1945); 0, Leopold & Wolman (1957); 0, Q, 
data from rivers (Einstein & Ba.rbarossa 1951; Schumm 1969; Hubbel & Matejka 1959; Danish 
rivers, The Danish Heath Society and B. Hasholt, Geogra.fisk Institut, University of Copenhagen, 
unpublished). 

which prevents infinite braiding, and the ratio qs/qb is increasing with 8. However, 
at large values of 8, cb becomes constant as shown in figure 1, which implies that though 
the amount of suspended sediment is rather large the variation in qs remains moderate. 

In  figures 7 and 8 the predicted value of the longitudinal wavenumber is shown as a 
function of k, D and 8. In  figure 7 the bed is assumed to be dune-covered, while the 
bed is plane in figure 8. 

7. Comparison with experiments 
Many experiments have been carried out in laboratory flumes in order to investigate 

the formation of meanders. These experiments have one advantage compared with 
data from nature: in nature the water discharge can vary quite a lot during a year, 
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FIGURE 5. Stability diagram for a dune-covered bed where the suspended 
load has been neglected. s = 2.56, Dld = 1000 and CD = 7.  

so that a formative discharge must be selected in order to compare observations with 
the theory. This formative discharge is close to the maximum discharge (bank-full 
discharge), for which the main part of the sediment transport takes place. In  a labora- 
tory flume the flow conditions are controlled, so that no difficulties concerning the 
formative discharge arise. However, in the laboratory a scale effect must be expected 
to take place, especially in experiments with small water depths. This scale effect is 
associated with the bed forms, because ripples or a plane bed will often be present 
instead of dunes. In  their experiments Chang, Simons & Woolhiser (1971), for instance, 
do not mention the existence of dunes or ripples, and from their description of the 
bed it seems that the alternate bar pattern existed without any dunes or ripples 
superposed. Hence their data are plotted on the stability diagram in figure 6 for a 
plane bed, and the agreement is good, especially as regards the upper limit of the 
width-depth ratio at which alternate bars will develop. In  their paper Chang et al. 
state that no alternate bar pattern could be observed if this ratio was lower than 12, 
which is the same as k, D = 0.26. 

In  the same diagram some of the data from the paper by Schumm & Khan (1 972) 
are depicted. Also here we have the problem concerning the behaviour of the bed 
form, but in those of the data where the Froude number exceeds 0.8, a plane bed 
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FIQURE 6. Stability diagram for an originally plane bed. The circles indicate meandering, the 
triangles braiding. 8 = 2.65, D/d = 1000 and CD = 7. 0 ,  Chang et al. (1971), plastic pellets; 0 ,  
Chang e t a l .  (1971), clay; 8 ,  Chang et al. (1971), sand; 0, A ,  Schumm & Khan (1972). 
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FIGURE 7. Comparison of predicted and longitudinal length of meanders for a dune-covered bed. 
The circles indicate data between the limits 0.04 < k, D < 0.1, while the reztangles indicate data 
for which k,D > 0.1, 8 = 2.66, D / d  = 1000 and CD = 7. 0, Schumm (1969); 0, ~ f 3 ,  Ackers & 
C'harlton (1970); 0, Ashnida & Narai (1969). 



622 J .  Predsee 

A , D = O  10 

h,D=004 
0 

1 I I I I 

0 0.' 0.4 0.6 0.x 1 .o 
0 

FIGURE 8. Comparison of predicted and longitudinal wavelength of meanders. The unperturbed 
bed is assumed to be plane. The data are taken from Chang et al. (1971). a = 2.65, D / d  = 1000 
andco=7. . ,k,D<O.i; . ,k ,D>O.l .  

must be expected to exist (Engelund & Fredsrae 1974). These data concern meandering 
as well as braiding, and it is seen that figure 6 describes this transition rather well. 
The rest of their data, together with other suitable laboratory data, have been plotted 
in figure 4, assuming the unperturbed bed to be dunes. In  the analysis of data, the 
braided data reported by Leopold & Wolman (1957) have been omitted, as they 
were obtained in the antidune region, where little is known about the hydraulic 
resistance. The antidune region is not important in practice. 

A special comment is needed on the experiments by Shen & Komura (1968). These 
were performed in a channel whose width-depth ratio was about 10 while the value 
of 6' was about 0.4, and it was possible to obtain meandering only if they, artificially, 
made the channel walls very rough. In  figure 4 their data for smooth walls are depicted 
and it is seen that they fall mainly in the stable region. However, by introducing rough 
walls, the turbulence intensity is increased, which may involve an increase in the ratio 
qs/qb. As we obtain the same tendency by increasing 6' in the present theory, their 
experiments can be explained from figure 4: by increasing 0 (or the ratio qs/qb), 
keeping Jc3D N 0.30, we enter the unstable region, where meandering will actually 
take place. 

In  figure 4 data from natural rivers have been plotted. If possible, measurements 
describing bank-full discharge were employed; otherwise instantaneous data were used. 

It is seen that, contrary to laboratory measurements, the values of 0 in natural 
rivers are often larger than one. If the suspended sediment were neglected, the theory 
would predict stability in this case (as seen from figure 5). This would imply that the 
rivers with large water discharge rates would be straightened up, contrary to all 
observations. 

Meander lengths measured in the laboratory are compared with those predicted 
by the stability theory in figures 7 and 8. A t  small values of 0 the theory predicts a 
greater dimensionless wavenumber in the case of a dune-covered bed than for a plane 
bed. This tendency is partly confirmed by the measurements by Ashnida & Narai 
(1969), who also indicated in their paper that the bed was dune-covered. As far as 
the measurements by Ackers & Charlton (1970) and by Schumm & Khan (1972) are 
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concerned, the deviation from the theory is perhaps due to the bed being covered 
by ripples rather t,han by dunes. However, in general the agreement between theory 
and measurements is satisfactory as the order of magnitude is correct. 

In natural rivers the value of 8 corresponding to bank-full discharge is often close to 
unity. It is interesting to note that for such large values of 0 the ratio between the 
longitudinal and transverse wavenumbers approaches values varying from 0.40 for 
wide rivers (k,D N 0.04) to 0.15 for narrow rivers (k,D w 0.20). This results in the 
following range of the ratio of meander length to river width: 

5 for wide rivers ( D / B  - 0.01), 
14 for narrow rivers ( D / B  N 0.05). 

LIB = 

In the data given by Leopold & Wolman concerning rivers in India and America 
almost all ratios of meander length to river width lie in the interval 5 < L/B < 15. 
A more complete comparison between data and theory is difficult, as the water depths 
are not indicated in their paper. 

8. Conclusion 
A stability theory has been developed which predicts whether a river meanders, 

braids or remains straight. By taking into account the effect of the transverse slope 
in a correct manner and including a description of the behaviour of the suspended 
sediment, the theory gives results in agreement with experimental findings, namely 
that a river will always remain straight if its width is smaller than 8 times its depth. 
Further, the river will braid if its width is larger than about 60 times its depth. The 
above-mentioned values are slightly dependent on the value of the Shields parameter 
as shown in figure 4. 

The theory predicts a meander length such that at a large value of the Shields 
parameter a narrow river has a ratio of meander length to river width of about 15, 
while wide rivers correspond to a smaller ratio of about 5. 

No excessive constants have been introduced or fitted in the present theory. 

The present work must be regarded as an extension and improvement of the work 
by Hansen (1967) and Engelund & Skovgaard (1973), carried out at the same institute 
as the present study. The author is especially grateful to  Professor Engelund, who 
played an important part in the preparation of the present paper. 
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